Paper Id: \qquad
\square

B TECH
 (SEM III) THEORY EXAMINATION 2019-20
 MATHEMATICS -III

Total Marks: 70
Time: 3 Hours
NoteAttemaltSectiohfs equiareymissidgtatheahooselitably.

SECTIOAN

1. Attempltquestiontsrief.
$2 \times 7=14$
a. Define analytic function.
b. Define the Binomial distribution with mean and variance.
c. Write the normal equation for the curve $y=+b x$
d. Give comparison between Regula-falsi method and Newton Raphson method.
e. Write the relation between $\mathrm{n}^{\text {th }}$ divided difference and $\mathrm{n}^{\text {th }}$ forward difference.
f. What do you mean by initial value problem?
g. Find Z

SECTION B

2. Attempt any three of the following:
$7 \times 3=21$
a. Show that the function $f(z)=\sqrt{|x y|}$ is not analytic at origin even though CR equations are satisfied at origin.
b. Find the measure of skewness and kurtosis based on moments for the
following distribution and draw your conclusion

| Marks | $5-15$ | $15-25$ | $25-35$ | $35-45$ | $45-55$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of students | 1 | 3 | 5 | 7 | 4 |
| | 5 | -2 | 1 | | |
| Decompose $A=$ | 7 | 1 | -5 | in the form LU, where L is lower triangular | | matrix and U is upperchangular matrix and hence solve the system of equations:

$$
\begin{align*}
5 x-2 y+z & =4 \\
7 x+y-5 z & =8 \\
3 x+7 y+4 z & =10
\end{align*}
$$

d.

Express the function $f(x)=$
| । as a Fourier Integral.
Hence evaluate
$\longrightarrow d \lambda$.

OR
Find the value of $u(x, t)$ satisfying the parabolic equation $\frac{\partial u}{\partial t}=4 \frac{\partial^{2} u}{\partial x^{2}}$ with boundary conditions $u(0, t)=0=u(8, t)$ and $u(x, 0)=4 x-\frac{x^{2}}{2}$ at the points
$x=i, i=0,1,2,3, \ldots \ldots .7$ and $\mathrm{t}=\frac{1}{8} j: j=0,1,2, \ldots \ldots, 5$
e. Given the initial value problem $-=x-y, y(0)=1$.

Find the numerical solution of differential equation at $x=0.4$ with $h=0.2$ by using Runge-Kutta method of Fourth order.

Roll No: \square

SECTION C

3. Attempt any one part of the following:
(a)

Evaluate the integration: $\int_{0}^{\pi} \frac{d \theta}{3+2 \cos \theta}$
(b)

State Cauchy Integral formula and hence evaluate $\oint_{C} \frac{\cos \pi^{2}}{(z-1)(z-2)} d z$, where C is the circle $|z|=3$.
4. Attempt any one part of the following:
(a) Find Fourier cosine transform of ——and hence find Fourier sine transform of - .
(b) Find the inverse Z-transform of $\mathrm{F}(\mathrm{z})$, where $\mathrm{F}(\mathrm{z})$ is given by
(i)

OR
(a) Classify the PDE $x^{2} \frac{\partial^{2} u}{\partial x^{2}}+2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}=0$
(b) Solve $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$ with conditions

$$
\begin{aligned}
& u(0, t)=u(1, t)=0 ; \quad u(x, 0)=\frac{x(1-x)}{2} \text { and } u_{t}(x, 0)=0, \text { taking } \\
& h=k=0.1 \text { for } 0 \leq \mathrm{t} \leq 0.4
\end{aligned}
$$

5. Attempt any one part of the following:
(a) In a partially distributed laboratory record of an analysis of a correlation data, the following result are legible:
Variance of $x=9$
Regression equatio $(8 x-10 y+66=0,40 x-18 y=214$.
What were (i) thef, mean values of x and y. (ii) the standard deviation of y and the coefficient offourrelation between x and y.
(b) Find the nen and variance of normal distribution.
6. Attempt any phart of the following:
(a) Find the real root of the equation $-2 x+5=0$ by method of False position correct three decimal places.
(b) State Lagrange interpolation formula. Find the interpolating polynomial by Lagrange interpolation formula for the given data

x	5	6	9	11
y	12	13	14	16

7. Attempt any one part of the following:
$7 \times 1=7$
(a) Apply Simpson's 3/8th rule to obtain approximate value of (i) $/ e d x$ (ii) $(2 x-x) / d x$ using Simpson's rule with 6 interval.
(b) Find x for which y is maximum and find the max value of y

x	1.2	1.3	1.4	1.5	1.6
y	0.9320	0.9636	0.9855	0.9975	0.9996

